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Abstract. In this paper, a stochastic model for a single radio telescope is
generated. The model takes into account interference from other radio sources

(including the sky), errors in the measurement of the detector’s position, errors

in the measurement of time at the detector station, noise due to the quantum
nature of light, and noise in the detector. This model is then used as the

basis for a computer simulation of a distributed array of radio telescopes. The
computer simulation successfully resolves a target signal using a few hundred
very bad detectors. The simulation is further employed to analyze the model’s

sensitivity to various parameters such as the number of detectors and the
magnitude of errors in time measurements.
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CHAPTER 1

Summary and conclusions

This paper develops a stochastic model of the behaviour of a single radio tele-
scope subject to incoming signals from various radio sources (including the sky).
In the model, the time is expressed in terms of the time when the signal one is
attempting to measure would pass the center of the Earth. The resulting stochas-
tic model expresses the probability that the detector will detect z photons at a
particular time t:

(1) pd(z, t) =
∞∑
x=0

pi
∑

x(x, t) ·
∫ x+ 1

2
y=x− 1

2
e
− 1

2

(
z−y
σd

)2

· dy

σd
√

2π

This expresses the probability that z photons are detected by the i-th detector at
the time when the i-th detector should be receiving the signal from the primary
radio source (the source being observed) which will pass the center of the Earth at
time t. Here σd is the standard deviation of the noise in the detector. The integral
in this equation arises from the tenuous assumption that noise in the detector can
be adequately modeled with a normal distribution.

In the above equation, the term pi
∑

x(x, t) gives the probability that x photons
from the various radio sources will reach the detector at time t. That probability
is:
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))x
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((σh/c)2 + σ2

t ) · 2π
· dεT

(2)

Here, sj(t) is the strength of the j-th signal which would pass the center of
the Earth during the sampling interval centered at time t. The hij terms are the
height of the i-th receiver measured parallel to a ray which starts at the center of
the Earth and extends toward the j-th radio source. The εT term is the total error
in the station’s time measurements due to errors in its positional measurement hij
and errors in its direct time measurement. The standard deviation of the errors in
positional measurements is σh, and the standard deviation of the errors in direct
time measurements is σt. The speed of light is denoted c.

Because equations 1 and 2 are quite unwieldy, a computer simulation was de-
veloped based upon this single detector model to determine the performance of an
array of these telescopes. The computer simulation shows that even faint signals
can be detected with very poor detectors when the accuracy of positional and time
measurements is within currently attainable limits.
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6 1. SUMMARY AND CONCLUSIONS

Chapter 2 gives a summary of the variables used in the development of this
model. Chapter 3 provides background information about radio telescope arrays
and forms the base upon which this model is cast.

In chapter 4, the goals for this model are established. It goes on to highlight
the problems in time and position measurements associated with distributing the
telescopes in this array, and it mentions the problems of detecting signals which are
incurred at each detector.

Chapter 5 goes on from there to derive equations 1 and 2. The analysis in
this chapter depends heavily upon some proofs about the sums of normally dis-
tributed variables and the sums of Poisson distributed variables. Those proofs are
in appendix A and appendix B.

Chapter 6 employs a computer simulation based upon the equations derived in
chapter 5. It shows empirical results of running the simulation with various sources
of radio interference, various magnitudes of time errors, and various numbers of
telescopes in the array.

Chapter 7 goes on to suggest places for further exploration before one attempts
to create this type of telescope array.



CHAPTER 2

Glossary of variables

This table summarizes the variables used in the development of the distributed
radio-telescope model. Throughout this paper, variables which are randomly dis-
tributed will be written in bold.1

Description Variable Units
the strength of the signal from the j-th source that will
pass the center of the Earth at time t

sj(t) photons/s

the height of i-th observation point in the direction toward
the j-th source with respect to the Earth’s center

hij m

the error in height measurement εh m
the standard deviation of height measurements σh m
the error in time measurement εt s
the standard deviation of time measurements σt s
the total error in time measurement caused by εh and εt εT s
the error in the detector εd photons/s
the standard deviation of the error in the detector σd photons/s
the speed of light c m/s
the radius of the Earth R m

1Unfortunately, a bold epsilon ε is indistinguishable from a normal epsilon ε in LATEX. How-
ever, the subscripts on them will still be bold.
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CHAPTER 3

Background information

Many of the best radio observatories use multiple radio telescopes in tandem
for an observation. The outputs of the individual telescopes are combined to form
a clearer image of the target object than any one of the telescopes could provide.
There is a tradeoff between the number of radio telescopes required and the sensi-
tivity of each telescope. The Very Large Array1 uses 27 25m-telescopes, the Very
Long Baseline Array2 uses 10 25m-telescopes, and the proposed Atacama Large
Millimeter Array3 will use 64 12m-telescopes. If a much larger array were possible
with much smaller telescopes (ones that individuals could afford), one would hope
to be able to harness some of the 400 members of the Society of Amateur Radio
Astronomers4 and some of the two million users who have donated computer time
to the SETI@Home5 project. With wide enough support, one may be able to create
an array large enough to make useful observations.

Radio telescope arrays link several telescopes together. Signals from the radio
source hit the different telescopes at slightly different times because the signals
have to travel different distances to each of the telescopes. The signals from these
telescopes are then recombined. The position of each telescope with respect to the
radio source is taken into account in order to synchronize the signals.

The recombined signals reinforce each other. Noise in the telescopes and from
other stellar sources have the same probability of being in-phase as out of phase
while the synchronized signals will be in-phase. By carefully placing multiple tele-
scopes, scientists can select particular frequencies from particular sources despite
large amounts of background interference.

The Very Long Baseline Array takes a different approach than most other ar-
rays. The 27 telescopes of the Very Large Array, for example, are all on the same
plot of land in New Mexico. The 10 telescopes of the Very Long Baseline Array are
not in close proximity. One telescope is in St. Croix, another in Hawaii, others in
California, etc. Rather than precisely positioning the telescopes to some precalcu-
lated formation, the scientist adjusts for the actual positions of the radio telescopes
to synchronize their data streams. This compensation can be accomplished so long
as the location of each telescope is precisely known and the data stream for each
telescope is precisely timestamped.

Global Positioning Satellite (GPS)6 receivers are becoming commonplace. Am-
ateurs can precisely know their latitude, longitude, and elevation. The Network

1http://www.aoc.nrao.edu/vla/html/VLAhome.shtml
2http://www.aoc.nrao.edu/vlba/html/VLBA.html
3http://www.alma.nrao.edu/
4http://www.bambi.net/sara.html
5http://setiathome.ssl.berkeley.edu/
6http://www.aero.org/publications/GPSPRIMER/index.html
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10 3. BACKGROUND INFORMATION

Time Protocol7 is nearing nanosecond accuracy on new computers. Computer users
will be able to accurately measure time intervals and synchronize time with stan-
dard clocks. The technology to synchronize data streams from amateur telescopes
will soon be widespread.

The only missing technology is cheap radio telescopes. This, however, is largely
due to demand. There has never been a use for cheap radio telescopes. If a large,
distributed array of cheap radio telescopes were possible, cheap radio telescopes
could readily be constructed.

7http://www.eecis.udel.edu/~mills/precise.htm



CHAPTER 4

Formulation of the model

Radio signals from pulsars and other sources are constantly hitting the Earth.
Figure 1 shows a signal from one pulsar approaching several detectors on Earth.
The signal will hit the detectors at different times because the detectors are different
distances away from the source (the pulsar).

For the purposes of this model, it is assumed that the Earth and the sources
of radio signals are all motionless. The length of time for any single point of
observation will be under 1/100-th of a second for this array. This model assumes
that any motion of the source or the Earth during that 1/100-th of a second will be
negligible and that the coordinate transformations to adjust for position over a series
of observation points can easily be added later. The coordinate transformations
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Figure 1. Signal hitting sensors on the Earth
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12 4. FORMULATION OF THE MODEL

would just obfuscate the main line of this development if they were to be included
from the outset.

1. Measuring time

The relative distances of the detectors from the sources are critical factors in
this model. This model uses hij to represent the height of the i-th detector with
respect to the j-th source. The quantity hij is the height of the detector measured
parallel to a ray originating at the center of the Earth and extending toward the
j-th radio source. For example, if the j-th radio source were directly over the north
pole, then hij would be

hij = R sin θi
where R is the radius of the Earth and θi is the degrees latitude north of the
equator for the i-th detector. An implicit assumption here is that each radio source
is far enough away that one can assume that the incoming radio waves are parallel
without incurring significant error.

The center of the Earth is the point of reference for all measurements in this
model. In order to determine the strength of the signal from the j-th source that
would have hit the center of the Earth at time t, one must compensate for the fact
that the signal hit the i-th detector sooner because the i-th detector was hij meters
closer to the j-th source than the center of the Earth is. Because light travels at
c meters per second, one must check the output of the i-th detector from time tij
where

tij = t− hij
c

However, because there is some error in the measurement of position of the
detector and in the measurement of time at the detector station, tij is randomly
distributed.

(3) tij = t−
(
hij
c

+
εh
c

+ εt

)
where εh is the error in the measurement of position and εt is the error in the
measurement of time.

This model assumes that the error in the measurement of position εh and
the error in the measurement of time εt are each normally distributed with zero
mean. The standard deviation of the error in position measurement is denoted σh,
and the standard deviation of the error in time measurement is denoted σt. In
practice, these errors may not be normally distributed. But, hopefully the number
of telescopes involved will be large enough to make it reasonable to use normal
distributions as approximations of the true distributions. Also, these errors may not
have zero means. But, because the model only depends on the relative positions and
times of the detectors, a bias in these distributions would not affect the results. The
key here is to synchronize the signals from the different detectors not to determine
the exact time the signal would pass the center of the Earth.

2. Measuring signals

The actual signal that reaches a detector has noise in it already. Radio waves
are not emitted at a constant rate from a source. Due to the quantum nature of
light, a “constant” source has a constant probability of emitting photons as opposed
to a constant emission of photons. Thus, the number of photons actually released



2. MEASURING SIGNALS 13

by a source follows a Poisson distribution whose parameter is the ideal emission
rate for the source.1.

Note: Radio waves are electromagnetic waves. They are of a lower frequency
than visible light waves, but they are fundamentally the same thing. Radio waves
are composed of photons just as visible light waves are.

If the source would ideally emit sj(t) photons for time t, then the probability
of x photons from the source arriving at the i-th detector at time tij is given by:

(4) px(x) =
(sj(t))

x
e−sj(t)

x!
Various sources contribute to noise in the detector—thermal noise, g-r noise

and 1/f noise.2 Rather than model each of these individually, this model assumes
that the net effect will be additive noise that is normally distributed with zero mean
and standard deviation σd. This is the most tenuous assumption thus far and must
certainly be taken up in future work.

1[Kitchin] p. 41
2[Kitchin] p. 40





CHAPTER 5

Analysis of the model

In this model, the terms εh
c and εt are combined into a total error in time due

to the errors in positional measurement and time measurement. This total error in
time is denoted εT. Thus, equation 3 from page 12 becomes:

(5) tij = t−
(
hij
c

+ εT

)
Given that εh and εt are normally distributed with zero means and standard

deviations of σh and σt respectively, one would like to know the distribution of the
total error in time εT. The total error in time εT is normally distributed with zero
mean and a standard deviation of

√
(σh/c)2 + σ2

t . The full derivation of this is
given in appendix A.

There will be more than one source whose radio signal will strike the detector.
Because of this, one must modify equation 4 to take into account multiple sources.
Taking s1(t) to be the signal one wishes to observe, one will synchronize the time
signals of the i-th detector using ti1 from equation 5. In other words, the output
of the i-th detector should be checked at time t− hi1

c . One must take into account
the strength of the other signals which would hit that detector at the same time.
To do this, one must check the strength of the j-th signal at time t + hij

c −
hi1
c .

One can readily verify that if one is checking the strength of the signal from the
primary source, one would be checking the strength of the signal that would reach
the center of the Earth at time t.

Given multiple variables which are each Poisson distributed, their sum is Pois-
son distributed. The full derivation of this is found in appendix B. Because of this
equation 4 becomes:

(6) pi
∑

x(x, t) =

(∑
j sj

(
t+ hij

c −
hi1
c

))x
e
−
∑
j sj
(
t+

hij
c −

hi1
c

)
x!

for multiple radio signal sources.
In order to take into account the errors in time measurement, one must sum

the probability from equation 6 times the probability of a particular error in time
measurement over all possible values of the error in time measurement. That is:

(7) pi
∑

x(x, t) =
∫ ∞
εT=−∞

pi
∑

x(x, t− εT ) · pεT(εT ) · dεT

Because the error in time measurement εT is normally distributed with zero
mean and a standard deviation of

√
(σh/c)2 + σ2

t (see page 15), the function pεT(εT )
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16 5. ANALYSIS OF THE MODEL

is given by:

(8) pεT(εT ) =
e
− 1

2

(
εT√

(σh/c)
2+σ2

t

)2

√
((σh/c)2 + σ2

t ) · 2π
It simplifies things greatly if one assumes that that the total error in time

measurement εT is the same for each source. In reality, the error in time due to the
error in position measurement εh will be different for sources which are in different
directions. However, because the speed of light c is very large compared to the
standard deviation of the error in position measurement σh, the whole value εh has
a very minor effect on εT anyway. With this assumption, equation 7 can be written
out completely:

pi
∑

x(x, t) =
∫ ∞
εT=−∞

(∑
j sj

(
t+ hij

c −
hi1
c − εT

))x
e
−
∑
j sj
(
t+

hij
c −

hi1
c −εT

)
x!

· e
− 1

2

(
εT√

(σh/c)
2+σ2

t

)2

√
((σh/c)2 + σ2

t ) · 2π
· dεT

(9)

This expresses the probability that x photons reach the i-th detector at the time
when the i-th detector should be receiving the signal from the primary radio source
(the source being observed) which will pass the center of the Earth at time t.

The equation for the probability that the i-th detector detects z photons at
that time must also take into account the noise in the detector. In the previous
chapter, this was assumed to be additive noise which was normally distributed
with zero mean and a standard deviation σd. Thus, the probability that the i-th
detector detects z photons is obtained by multiplying the probability that there
were x photons present and z − x noise in the detector summed over all possible
values of x and z − x. This is:

(10) pd(z, t) =
∞∑
x=0

pi
∑

x(x, t) ·
∫ x+ 1

2
y=x− 1

2
e
− 1

2

(
z−y
σd

)2

· dy

σd
√

2π

The integral in the above equation raises immediate warning flags about the
choice of a normal distribution to model the detector noise. The integral serves to
mesh the continuous normal distribution with the discrete summation by rounding
off the noise in the detector to the nearest whole photon.

However, the hopes of simplifying equation 10 are slim. On the brighter side,
it is clear that when all of the various random variables obtain their mean values
and when the primary source is the only source, the detected quantity is precisely
the one sought. So, while unwieldy, the model is on track.

Unfortunately, this equation only models a single detector. Taking into account
all of the detectors in the array involves determining how the average of variables
distributed as in equation 10 is distributed. Rather than tackle this directly, the
author wrote a computer simulation employing the above model. This simulation
is used in the following chapter to make predictions with this model and to explore
its sensitivities.



CHAPTER 6

Interpretation of the model

Figure 1 shows the mean squared error of a distributed array of radio telescopes
as a function of the number of telescopes. In this plot, the only radio sources were
the primary target and the sky. The primary source signal was taken to be a
sine wave of frequency 100 Hz. Note: Young nascent pulsars rotate at about 100
Hz, and they slow down as they age.1 The source was taken to be 1/1000-th the
brightness of the sky. The standard deviation in position measurement εh was
taken to be 0.8 meters (reasonable under current GPS performance specifications).
And, the standard deviation of time measurement εt was taken to be 0.01 seconds
(well within the current claims of the Network Time Protocol). The detectors were
sampled at 1024 Hz.

The detector was taken to be 20 times as noisy as the sky. By noise in the
sky, one means the noise caused by the Poisson distribution of photons emitted by
the sky. The standard deviation of the Poisson distribution is the square root of
its mean. For this simulation, the sky’s mean brightness was taken to be 10000
photons per second. Thus, the standard deviation of the sky noise is 100 photons

1[UCSC] second paragraph
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Figure 1. Mean squared-error as a function of the number of detectors
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18 6. INTERPRETATION OF THE MODEL
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Figure 2. Mean squared-error as a function of the log10 of the
standard deviation of the time error σt

per second. The detector was taken to have a standard deviation of 2000 photons
per second.

From figure 1, it is clear that if only a single radio source (plus sky noise) is
being detected by more than 350 telescopes, the mean squared-error easily stays
below 0.02 photons per second on a signal whose amplitude is 10 photons per
second. That is a mean squared-error less than 1/500-th of the signal against a
noisy sky with a very poor detector.

Figure 2 shows the model’s sensitivity to errors in time measurements. It plots
the mean squared-error as a function of the log10 of the standard deviation of time
measurements εt for a system of 500 detectors scattered randomly over the surface
of the Earth. In this plot, the only radio sources were the primary target and the
sky. The primary source signal was taken to be a sine wave of frequency 100 Hz
as it was for figure 1. The source was taken to be 1/1000-th the brightness of the
sky. The standard deviation in position measurement εh was again taken to be 0.8
meters. The detectors were again taken to be 20 times as noisy as the sky as they
were for figure 1.

Because the frequency of the source was taken to be 100 Hz, it is unsurpising
that the mean squared-error of the array drops off dramatically once the standard
deviation of the time error drops below 1/100-th of a second.

For multiple radio sources, the results are still promising. Assuming that each
detector is an omni-directional radio antenna (that is, it has a good response to
radio signals coming from any direction), the mean squared-error still drops below
2 photons per second with around 150 detectors. Figure 3 shows the situation
where there are fifty radio sources in addition to the sky. The mean squared-error
here is with respect to the primary source which has an amplitude of 10 photons
per second. As with the earlier plots, the detectors are taken to be 20 times as
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Figure 3. Mean squared-error as a function of the number of
detectors with multiple sources of interference

noisy as the sky. The amplitude of the primary source is taken to be 1/1000-th
the brightness of the sky. The primary source has a frequency of 100 Hz. The
other radio sources are scattered about the sky and have similar amplitudes and
wavelengths as the primary source.

Because of this, one need not point the individual telescopes in any direction.
The array can image the entire sky at one time. One can choose a direction from
which to analyze the data by selecting height values for the detectors hi1’s appro-
priate to that direction. Thus, the array of telescopes is quite robust. Even with
really poor telescopes, the array can distinguish faint sources against a bright sky
amid interference from other sources.





CHAPTER 7

Further work

Most of the interpretation of this model is based upon a computer simulation.
As such, more analysis should be done to verify that the computer simulation
faithfully reproduces the model and correctly outputs data. All of the code which
the author wrote for this computer simulation is freely available at:

http://www.nklein.com/products/scope

The computer simulation assumes also that the detectors attempted to synchro-
nize their sample times (as best they can given the total error in time measurement
εT ). In reality, it is more likely that each detector’s sampling will have its own time
offset and that one would like to know the output of a detector for a time period
that is partially in one sample and partially in another sample. For example, if
a telescope sampled every 1/1000-th of a second beginning at time zero, but the
adjustment factor ti1 for that telescope is 1/2500-th of a second, then one would
rather the telescope had started recording 1/2500-th of a second earlier. It would
be nice to model the situation where the values from a particular telescope must
be interpolated from the values that the telescope recorded.

Another assumption in the computer simulation is that the detectors are dis-
tributed with equal probability over the entire surface of the Earth and that the
pulsar radio sources are evenly distributed over the sky. In reality, chances are good
that the detectors will be clustered in high population areas and that the pulsars
will most likely be in the direction of the galactic center. A more detailed model
of the Earth and the locations and strengths of various pulsars would benefit the
simulation greatly.

As mention on page 13, the assumption that the noise in the detector can be
modeled with a normal distribution of zero mean is questionable. A more detailed
model of the detector noise which takes into account thermal noise, g-r noise, and
1/f noise is desirable.

However, despite these concerns, the model paints a promising picture for a
distributed observatory. It is hopeful that an array such as this may prove viable.
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APPENDIX A

Distribution of εh/c+ εt

Given that εh is normally distributed with mean 0 and standard deviation H
and that εt is normally distributed with mean 0 and standard deviation T , we want
to find the distribution of εhc +εt. We will show that the sum is distributed normally

with mean 0 and standard deviation
√

(H/c)2 + T 2.

Proof. Under the assumptions, the probability that εh takes on any particular
value h is given by:

(11) pεh(h) =
e−

1
2 ( hH )2

H
√

2π

and the probability that εt takes on any particular value t is given by:

(12) pεt(t) =
e−

1
2 ( tT )2

T
√

2π

We now concern ourselves with the probability that εh
c + εt takes on any par-

ticular value z. This probability is given by the following integral which sums the
probabilities of each possible combination of h and t that result in a particular z:

(13) pz

(
z =

h

c
+ t

)
=
∫ ∞
−∞

pεh(h) · pεt
(
z − h

c

)
· dh

We shall substitute into equation 13 the values of pεh and pεt given by equations
11 and 12.

pz(z) =
∫ ∞
−∞

e−
1
2 ( hH )2

H
√

2π
· e
− 1

2 ( z−h/cT )2

T
√

2π
· dh

=
1

HT · 2π

∫ ∞
−∞

e
− 1

2

(
h2

H2 +
z2−2zh/c+h2/c2

T2

)
· dh

=
1

HT · 2π

∫ ∞
−∞

e
− 1

2

[
(H2/c2+T2)h2−2zH2h/c+H2z2

H2T2

]
· dh

(14)

Equation 14 looks hopeless at first glance. But, because

(15)
∫ ∞
−∞

e
1
2 (h−µσ )2

· dh = σ
√

2π

it remains only to massage the integral into this form. This is easier than it may
appear because it doesn’t matter what µ turns out to be. It doesn’t figure into the
result of the integral.
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24 A. DISTRIBUTION OF εh/c+ εt

To massage the integral into the form of equation 15, we will complete the
square in the exponent of equation 14 without introducing any new terms containing
h.

p(z) =

∫∞
−∞ e

− 1
2

 (H2/c2+T2)h2−2H2zh/c+ H4z2

H2+T2c2

H2T2


· e
− 1

2

 H4z2

H2+T2c2
+H2z2

H2T2


· dh

HT · 2π

=
e−

1
2

(
1− H2

H2+T2c2

)
z2

T2

HT · 2π

∫ ∞
−∞

e

− 1
2

h
√

(H/c)2+T− H2z
c
√

(H/c)2+T2

HT


2

· dh

=
e−

1
2

(
1− H2z

H2+T2c2

)
T2

HT · 2π

∫ ∞
−∞

e
− 1

2

h− H2z
c[(H/c)2+T2]

HT√
(H/c)2+T

2

· dh

Now, the integral is in the form of equation 15. The value of σ is HT√
(H/c)2+T 2

.

The value of µ is not very pretty, but it does not enter into the value of the integral.
Now, we can replace the integral with its value.

p(z) =
e
− 1

2

(
z√

(H/c)2+T2

)2

HT · 2π
· HT

√
2π√

(H/c)2 + T 2

=
e
− 1

2

(
z√

(H/c)2+T2

)2

√
(H/c)2 + T 2

√
2π

(16)

Equation 16 shows that z = εh/c+ εt is normally distributed with mean 0 and

standard deviation
√

(H/c)2 + T 2. �

By extension (if one takes c to be 1), one can see that the sum of normally dis-
tributed variables x1,x2, . . .xn with zero means and standard deviationsX1, X2, . . . Xn

respectively is normally distributed with zero mean and standard deviation
√∑n

i=1Xi.
Particularly, if X1 = X2 = · · · = Xn = X, then the sum is normally distributed
with zero mean and standard deviation

√
n ·X.



APPENDIX B

Distribution of sum of Poisson distributed
variables

Given two variables x and y which are Poisson distributed with parameters X
and Y respectively, we will show that the sum z = x+y is Poisson distributed with
parameter X + Y .

Proof. Because x is Poisson distributed, the probability that it takes on any
particular value x is given by:

(17) px(x) =
Xxe−X

x!
Similarly, the probability that y takes on any particular value is:

(18) py(y) =
Y ye−Y

y!

The probability that z takes on any particular value z is the probability that x
takes on a particular value x times the probability that y takes on a value of z−x.
There are many combinations of x and y that accomplish this. Thus, we must sum
the probabilities over each combination. Since neither x nor y can be negative, x
can only range from 0 to z. The probability then that the sum x + y takes on the
value z is given by:

(19) px+y(z) =
z∑
x=0

px(x) · py(z − x)

where px is given by equation 17 and py is given by equation 18.
Substituting equations 17 and 18 into equation 19, we obtain:

px+y(z) =
z∑
x=0

Xxe−X

x!
· Y

(z−x)e−Y

(z − x)!

= e−(X+Y )
z∑
x=0

Xx

x!
· Y

(z−x)

(z − x)!

We can simplify this greatly by multiplying the whole equation by z!/z!.

px+y(z) =
e−(X+Y )

z!

z∑
x=0

z!
x!(z − x)!

·Xx · Y (z−x)

The expression z!
x!(z−x)! can be rewritten

(
z
x

)
. Because

(
z
x

)
is the coefficient of

XxY (z−x) in the binomial expansion of (X +Y )z, we can get rid of the summation

25
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in the above equation.

px+y(z) =
e−(X+Y )

z!

z∑
x=0

(
z

x

)
·Xx · Y (z−x)

=
(X + Y )z e−(X+Y )

z!

(20)

This shows that x + y is Poisson distributed with parameter X + Y . �

By extension, the sum of Poisson distributed variables x1,x2, . . .xn with re-
spective parameters X1, X2, . . . Xn is Poisson distributed with parameter

∑n
i=1Xi.
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