
C++ Template Class for Geometric Algebras

nklein software (www.nklein.com)

v1.1.2005.01.13

Contents

1 Version 2

2 License 3

3 Introduction 3

4 The GeometricAlgebra Template Class 4
4.1 Data Members . 4
4.2 Methods . 5

4.2.1 Constructor . 5
4.2.2 Copy Constructor . 6
4.2.3 Assignment Operator . 6
4.2.4 Coefficient Accessors . 6
4.2.5 Addition . 7
4.2.6 Subtraction . 8
4.2.7 Negation . 9
4.2.8 Grade Involution . 10
4.2.9 Reversion . 11
4.2.10 Conjugation . 12
4.2.11 Multiplication . 13
4.2.12 Wedge . 15

4.3 Class . 16

5 Test Code 17

6 The GeomMultTable Template Class 19
6.1 Data . 19
6.2 Methods . 19

6.2.1 Constructor . 19
6.2.2 Query Method . 21

6.3 Class . 21

1

7 The GeomGradeTable Template Class 21
7.1 Data . 22
7.2 Methods . 22

7.2.1 Constructor . 22
7.2.2 Query Method . 23

7.3 Class . 23

8 Source Files 24
8.1 geoma.h . 24
8.2 geomaData.h . 24
8.3 geoma.cc . 25

1 Version

2 〈version 2〉≡ (24b)
"v1.1.2005.01.13"

2

2 License

Adapted from http://www.nklein.com/etc/copyright.html
We at nklein software made all text, software, and other stuff in this package.

We authorize you to do anything you like with these so long as you do not
restrict the rights of others to do what they like with them. We’re not saying
you have to give away your products. We’re just saying that all of the items in
this package have a Universal, Non-Exclusive License.

For example, if you wanted to take some of this text or some of this software
and plaster your name on them and sell them, fine. But, you cannot keep Sally
Q. Public from taking those same items and plastering her name on them and
selling them. You just can’t. It’s all as hers as it is yours.

All of that said, it’d please us plenty if you slung appreciation, accolades,
credit, and/or cash our way as you see fit.

3 Introduction

The geometric algebras or Clifford algebras are very useful in a variety of areas.
There are some packages out there to deal with them in Maple and Java and
such. But, to our knowledge, this is the only publically available C++ template
class to implement them.

The Clifford algebra C `p,q is an algebra generated by vectors from a quadratic
space. The first p unit vectors contribute positively to the norm and the other
q unit vectors contribute negatively to the norm. For unit vectors ei and e j,

eie j = ei j =

 1 1 ≤ i = j ≤ p
−1 p < i = j ≤ p + q

−e jei = −e ji i 6= j
(1)

In other words, a vector r = ∑p+q
i=1 aiei obeys

rr = r2 = 〈r, r〉 =
p

∑
i=1

a2
i −

p+q

∑
i=p+1

a2
i (2)

All of the cross terms here cancel out because ei j = −e ji when i 6= j.
In a general multiplication of two vectors a and b, these terms do not cancel

out. But, because of the anticommutativity of the cross-terms, we can always
sort the order of the subscripts and only affect the sign of the coefficient. For
example:

e3142 = −e3124

= e1324

= −e1234

3

And, identical subscripts annihilate each other when adjacent. For example, in
C `1,3

e2142 = −e2124

= e1224

= −e14

and

e2141 = −e2114

= −e24

There are some excellent introductions to Clifford algebras available on the
web. Some of these are:

• http://www.mrao.cam.ac.uk/~clifford—The Geometric Algebra Group
at Cambridge

• http://www.hit.fi/~lounesto—Pertti Lounesto whose excellent book
Clifford Algebras and Spinors got me started with Clifford algebras.

• http://www.clifford.org—The International Clifford Algebra Society
(though this page is fairly out of date).

The class implemented in this document is a template class that requires
three template parameters: the data type for scalars, the value of p, and the
value of q. The data type for scalars must support addition, subtraction, multiplication,
assignment from another member of the same type, and assignment from the
integer 0. The multiplication need not be commutative.

4 The GeometricAlgebra Template Class

This is the main template class generated in this document. It implements
addition of a multivector and scalar, subtraction of a scalar from a multivector,
and (left or right) multiplication of a multivector by a scalar. It implements
the negation, addition, subtraction, multiplication, coefficient access, grade-
involution, reversion, and conjugation of arbitrary elements of C `p,q.

4.1 Data Members

The coefficients of the various k-forms are stored in an array. The array has to
contain 2p+q coefficients. These are the

(p+q
k

)
k-forms for all 0 ≤ k ≤ p + q.

The binary digits of the index specify which unit vectors make up this k-
form. A k-form will have k-bits set in the index. Because every k-form can be
reordered with transpositions (with a possible change of sign), we only need
to track which unit vectors compose a given k-form. We do not need to track

4

the order in which they appear. The n-th bit of the index will specify the unit
vector en+1.

Here are some examples of k-forms from C `1,3 and their indices in base 2
and base 10.

1 = 00002 = 010
e2 = 00102 = 210

e23 = 01102 = 610
e14 = 10012 = 910

e134 = 11012 = 1310
e1234 = 11112 = 1510

(3)

So, the array of coefficients must hold 2p+q elements of the data type Type
given to the template.

5a 〈data members 5a〉≡ (16)
Type coef[1U << (P+Q)];

4.2 Methods

Herein lie the implementations of the constructor, the coefficient accessor, the
addition, subtraction, multiplication, and various involutions.

4.2.1 Constructor

In the constructor for the GeometricAlgebra template class, we simply initialize
all of the coefficients to zero if the init parameter is true. The init parameter
defaults to true. But, we allow one to skip initialization in order to allow
one to optimize out the initialization of things that will just be assigned over
immediately. This is especially useful if assigning the integer 0 to an element
of type Type is expensive.

5b 〈public methods 5b〉≡ (16) 6a.

GeometricAlgebra(bool init = true)
{

if (init) {
for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {

coef[ii] = 0;
}

}
}

Uses GeometricAlgebra 16.

5

4.2.2 Copy Constructor

In the copy constructor for the GeometricAlgebra template class, we employ
the use of the assignment operator.

6a 〈public methods 5b〉+≡ (16) /5b 6b.

inline
GeometricAlgebra(const GeometricAlgebra<Type,P,Q>& b)
{

*this = b;
}

Uses GeometricAlgebra 16.

4.2.3 Assignment Operator

In the assignment operator for the GeometricAlgebra template class, we employ
the use of the assignment operator for Type and simply copy the coefficients.

6b 〈public methods 5b〉+≡ (16) /6a 6c.

inline GeometricAlgebra<Type,P,Q>&
operator =(const GeometricAlgebra<Type,P,Q>& b)
{

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
coef[ii] = b.coef[ii];

}
return *this;

}
Uses GeometricAlgebra 16.

4.2.4 Coefficient Accessors

In the coefficient accessor, we make sure that the index is within the valid
range. If it is too big, we huck an exception. Otherwise, we return the requested
coefficient.

6c 〈public methods 5b〉+≡ (16) /6b 7a.

inline Type&
operator [] (const unsigned int index)
{

if (index >= (1U << (P+Q))) {
throw std::out_of_range("index");

}
return coef[index];

}

6

And, we made a const version of the same thing.

7a 〈public methods 5b〉+≡ (16) /6c 10.

inline const Type&
operator [] (const unsigned int index) const
{

if (index >= (1U << (P+Q))) {
throw std::out_of_range("index");

}
return coef[index];

}

4.2.5 Addition

The addition of a multivector and a scalar is quite simple. We simply add the
scalar to the zero-th coefficient of the multivector.

7b 〈friend methods 7b〉≡ (24a) 7c.

template <class Type, const unsigned int P, const unsigned int Q>
inline
GeometricAlgebra<Type,P,Q>
operator + (const GeometricAlgebra<Type,P,Q>& a,

const Type& b)
{

GeometricAlgebra<Type,P,Q> c = a;

c[0] = a[0] + b;

return c;
}

Uses GeometricAlgebra 16.

And, left-addition of a scalar is basically the same thing.

7c 〈friend methods 7b〉+≡ (24a) /7b 8a.

template <class Type, const unsigned int P, const unsigned int Q>
inline
GeometricAlgebra<Type,P,Q>
operator + (const Type& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c = b;

c[0] = a + b[0];

return c;
}

Uses GeometricAlgebra 16.

7

The addition of two multivectors is fairly straightforward. We simply add
the corresponding components.

8a 〈friend methods 7b〉+≡ (24a) /7c 8b.

template <class Type, const unsigned int P, const unsigned int Q>
inline
GeometricAlgebra<Type,P,Q>
operator + (const GeometricAlgebra<Type,P,Q>& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c(false);

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
c[ii] = a[ii] + b[ii];

}

return c;
}

Uses GeometricAlgebra 16.

4.2.6 Subtraction

The subtraction of a scalar from a multivector is quite simple. We simply
subtract the scalar from the zero-th coefficient of the multivector.

8b 〈friend methods 7b〉+≡ (24a) /8a 9a.

template <class Type, const unsigned int P, const unsigned int Q>
inline
GeometricAlgebra<Type,P,Q>
operator - (const GeometricAlgebra<Type,P,Q>& a,

const Type& b)
{

GeometricAlgebra<Type,P,Q> c = a;

c[0] = a[0] - b;

return c;
}

Uses GeometricAlgebra 16.

8

At this point, we have opted not to subtract multivectors from scalars. If
you want this functionality, you will just have to employ left-scalar addition
and multivector negation.

The subtraction of two multivectors is fairly straightforward. We simply
subtract the corresponding components.

9a 〈friend methods 7b〉+≡ (24a) /8b 9b.

template <class Type, const unsigned int P, const unsigned int Q>
inline
GeometricAlgebra<Type,P,Q>
operator - (const GeometricAlgebra<Type,P,Q>& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c(false);

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
c[ii] = a[ii] - b[ii];

}

return c;
}

Uses GeometricAlgebra 16.

4.2.7 Negation

The negation of a multivector is quite straightforward. We simply negate each
coefficient of the multivector. Rather than require the Type of the coefficients
to support unary negation, we will just subtract from a zero scalar.

9b 〈friend methods 7b〉+≡ (24a) /9a 13a.

template <class Type, const unsigned int P, const unsigned int Q>
inline
GeometricAlgebra<Type,P,Q>
operator - (const GeometricAlgebra<Type,P,Q>& a)
{

GeometricAlgebra<Type,P,Q> b(false);
Type zero = 0;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
b[ii] = zero - a[ii];

}

return b;
}

Uses GeometricAlgebra 16.

9

4.2.8 Grade Involution

The grade involution of a multivector is a bit funky. It toggles the sign of every
coefficient of an odd-graded element. In code, this amounts to wheter the
bottom bit of the grade is set. Rather than require the Type of the coefficients
to support unary negation, we will just subtract it from a zero scalar.

10 〈public methods 5b〉+≡ (16) /7a 11.

inline
GeometricAlgebra<Type,P,Q>
GradeInvolution(void) const
{

GeometricAlgebra<Type,P,Q> a(false);
Type zero = 0;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
if ((GetGrade(ii) & 1) != 0) {

a[ii] = zero - coef[ii];
} else {

a[ii] = coef[ii];
}

}

return a;
}

Uses GeometricAlgebra 16.

10

4.2.9 Reversion

The reversion of a multivector is fairly hairy. It reverses the order of the subscripts
for each k-form. For example, the 3-form e123 becomes e321 = −e123 while the
4-form e1234 does not change signs.

Now, the sign only depends upon the odd-ness or even-ness of the number
of transpositions required to get things back in order. This obeys a simple
recurrance relationship. Let T(n) be the number of transpositions required
to revert an n-form. Then, we can see that T(n + 1) = T(n) + n − 1 because
it will require T(n) transpositions to reorder the first n subscripts and n − 1
transpositions to get the n + 1-th subscript from one end of the list to the other.

With this recurrence relationship, we can see that the odd-ness or even-ness
of T(n + 4) is the same as that of T(n), because

T(n + 4) = T(n + 3) + n + 2
= T(n + 2) + 2n + 3
= T(n + 1) + 3n + 3
= T(n) + 4n + 2

And, because T(0) and T(1) are even while T(2) and T(3) are odd, we have
that an n-form requires an odd number of transpositions to revert iff n ≡ 2 or
n ≡ 3 modulo 4. In code, this translates to whether the second bit of the grade
is set.

11 〈public methods 5b〉+≡ (16) /10 12.

inline
GeometricAlgebra<Type,P,Q>
Reversion(void) const
{

GeometricAlgebra<Type,P,Q> a(false);
Type zero = 0;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
if ((GetGrade(ii) & 2) != 0) {

a[ii] = zero - coef[ii];
} else {

a[ii] = coef[ii];
}

}

return a;
}

Uses GeometricAlgebra 16.

11

4.2.10 Conjugation

The conjugation of a multivector is a grade involution and a reversion (in either
order). Thus, this code is similar to the code in the previous two sections. The
sign of the coefficient changes iff either but not both of the grade involution
and reversion would change it.

12 〈public methods 5b〉+≡ (16) /11
inline
GeometricAlgebra<Type,P,Q>
Conjugation(void) const
{

GeometricAlgebra<Type,P,Q> a(false);
Type zero = 0;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
switch (GetGrade(ii) & 3) {
case 0:
case 3:

a[ii] = coef[ii];
break;

case 1:
case 2:

a[ii] = zero - coef[ii];
break;

}
}

return a;
}

Uses GeometricAlgebra 16.

12

4.2.11 Multiplication

The multiplication of a multivector by a scalar is rather straightforward. We
simply multiply each coefficient in the multivector by the scalar.

13a 〈friend methods 7b〉+≡ (24a) /9b 13b.

template <class Type, const unsigned int P, const unsigned int Q>
inline
GeometricAlgebra<Type,P,Q>
operator * (const GeometricAlgebra<Type,P,Q>& a,

const Type& b)
{

GeometricAlgebra<Type,P,Q> c;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
c[ii] = a[ii] * b;

}

return c;
}

Uses GeometricAlgebra 16.

Here, since multiplication need not be commutative in Type, we must take
to preserve this.

13b 〈friend methods 7b〉+≡ (24a) /13a 14.

template <class Type, const unsigned int P, const unsigned int Q>
inline
GeometricAlgebra<Type,P,Q>
operator * (const Type& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
c[ii] = a * b[ii];

}

return c;
}

Uses GeometricAlgebra 16.

13

The multiplication of two multivectors is a bit more complicated. Here,
we have to sum up all of the terms that contribute to each coefficient in the
product. Fortunately, with the index-scheme that we defined in 4.1 on page 4,
the product of the i-th term of the first vector and the j-th term of the second
vector contributes to the i⊗ j coefficient where ⊗ is a bitwise XOR. The sign of
the product is stored in the GeomMultTable.

14 〈friend methods 7b〉+≡ (24a) /13b 15.

template <class Type, const unsigned int P, const unsigned int Q>
inline
GeometricAlgebra<Type,P,Q>
operator * (const GeometricAlgebra<Type,P,Q>& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
for (unsigned int jj=0; jj < (1U << (P+Q)); ++jj) {

unsigned int index = (ii ^ jj);
if (c.IsPositive(ii, jj)) {

c[index] = c[index] + (a[ii] * b[jj]);
} else {

c[index] = c[index] - (a[ii] * b[jj]);
}

}
}

return c;
}

Uses GeometricAlgebra 16.

14

4.2.12 Wedge

The wedge product of two multivectors is similar to the Clifford product of
two multivectors. Here, we have to sum up all of the terms that contribute
to each coefficient in the product. Fortunately, with the index-scheme that we
defined in 4.1 on page 4, this is somewhat straightforward. If the i-th term and
the j-th term have any bits in common, then the contribution of the i-th term
wedged with the j-th term is zero. Otherwise, the contribution is the same as
it would be in the Clifford product.

15 〈friend methods 7b〉+≡ (24a) /14
template <class Type, const unsigned int P, const unsigned int Q>

inline
GeometricAlgebra<Type,P,Q>
operator ^ (const GeometricAlgebra<Type,P,Q>& a,

const GeometricAlgebra<Type,P,Q>& b)
{

GeometricAlgebra<Type,P,Q> c;

for (unsigned int ii=0; ii < (1U << (P+Q)); ++ii) {
for (unsigned int jj=0; jj < (1U << (P+Q)); ++jj) {

unsigned int mask = (ii & jj);
if (mask == 0) {

unsigned int index = (ii ^ jj);
if (c.IsPositive(ii, jj)) {

c[index] = c[index] + (a[ii] * b[jj]);
} else {

c[index] = c[index] - (a[ii] * b[jj]);
}

}
}

}

return c;
}

Uses GeometricAlgebra 16.

15

4.3 Class

The actual GeometricAlgebra template class itself inherits from the GeomMultTable
template class which is described in section 6 on page 19. The GeometricAlgebra
template class uses the GeomMultTable template class to maintains the lookup
tables that are used in the multiplication, grade involution, reversion, and
conjugation. Beyond that, it contains some data members of its own and the
methods that were implemented above.

16 〈template class 16〉≡ (24a)
template <class Type, const unsigned int P, const unsigned int Q=0>

class GeometricAlgebra
: public nklein_priv::GeomMultTable<P,Q>

{
protected:

〈data members 5a〉
public:

〈public methods 5b〉
};

Defines:
GeometricAlgebra, used in chunks 5–15, 17, and 24b.

Uses GeomMultTable 21b.

16

5 Test Code

The test code creates a couple of C `2,1 multivectors and does a variety of things
to them. At each step, the multivector is printed so that the reader can verify
that things function as claimed. This code also creates several other types of
multivectors. The point of this is to ensure that multiple types of multivectors
can be created without the templates losing their heads. Additionally, one
can check with a tool such as nm(1) to ensure that this code only creates one
gradeTable (for n = 3) and two multTables (one for p = 2, q = 1 and one for
p = 3, q = 0).

17 〈test code 17〉≡ (25)
int
main(void)
{

nklein::GeometricAlgebra< int, 2, 1 > a;
nklein::GeometricAlgebra< int, 2, 1 > b;
nklein::GeometricAlgebra< int, 2, 1 > c(false);
nklein::GeometricAlgebra< int, 3 > d;
nklein::GeometricAlgebra< double, 3 > e;
nklein::GeometricAlgebra< std::complex< double >, 3 > f;

a[0] = 1;
a[1] = 1;
a[3] = 1;
a[7] = 1;

b[1] = 1;
b[2] = 1;
b[4] = 1;

c = a;
std::cout << "a = " <<

〈test code print c 18〉;

c = b;
std::cout << "b = " <<

〈test code print c 18〉;

c = 2 * a - b;
std::cout << "2*a - b = " <<

〈test code print c 18〉;

c = a.GradeInvolution();
std::cout << "\\hat{a} = " <<

〈test code print c 18〉;

17

c = a.Reversion();
std::cout << "\\tilde{a} = " <<

〈test code print c 18〉;

c = a.Conjugation();
std::cout << "\\bar{a} = " <<

〈test code print c 18〉;

c = b*b;
std::cout << "b*b = " <<

〈test code print c 18〉;

c = a*b;
std::cout << "a*b = " <<

〈test code print c 18〉;

c = b*a;
std::cout << "b*a = " <<

〈test code print c 18〉;

c = a^b;
std::cout << "a^b = " <<

〈test code print c 18〉;

c = b^a;
std::cout << "b^a = " <<

〈test code print c 18〉;

return 0;
}

Uses GeometricAlgebra 16.

To print out a C `2,1 multivector, we simply emit each coefficient with the
appropriate k-form.

18 〈test code print c 18〉≡ (17)
c[0]

<< " + " << c[1] << "e_1"
<< " + " << c[2] << "e_2"
<< " + " << c[4] << "e_3"
<< " + " << c[3] << "e_{12}"
<< " + " << c[5] << "e_{13}"
<< " + " << c[6] << "e_{23}"
<< " + " << c[7] << "e_{123}"
<< std::endl

18

6 The GeomMultTable Template Class

The general GeometricAlgebra template class uses the GeomMultTable template
class. This template class is not in the nklein namespace alongside the GeometricAlgebra
template class. It is not intended for general use. But, it helps conserve memory.

6.1 Data

The thrust of this table is that it holds the sign of the multiplication of a given j-
form by a given k-form. Which indices correspond to which k-forms is describe
in section 4.1 on page 4.

19a 〈template multiplication table private data 19a〉≡ (21b)
static int multTable[1U << (P+Q)][1U << (P+Q)];

19b 〈template multiplication table data 19b〉≡ (24b)
template<const unsigned int P, const unsigned int Q=0>

int GeomMultTable<P,Q>::multTable[1U << (P+Q)][1U << (P+Q)];
Uses GeomMultTable 21b.

6.2 Methods

Herein lie the implementations of the constructor and the query methods for
this template class.

6.2.1 Constructor

To fill the table, we run through every combination of coefficient ii by coefficient
jj and we track how many times we have to “move” bits of jj past bits of ii.
The iiTopBits variable keeps track of how many bits we may still have to slide
past in ii.

19c 〈template multiplication methods 19c〉≡ (21b)
GeomMultTable()
{

for (unsigned ii=0; ii < (1U << (P+Q)); ++ii) {
unsigned int iiInitialTopBits = GetGrade(ii);

for (unsigned jj=0; jj < (1U << (P+Q)); ++jj) {
unsigned int iiTopBits = iiInitialTopBits;

〈template multiplication table calculate sign 20a〉

multTable[ii][jj] = sign;
}

}
}

Uses GeomMultTable 21b.

19

To calculate the sign of the multiplication of ii and jj, we go through each
of the bits which are set in jj. We know that the sign is a function of the parity
of the number of transpositions that this bit must incur to navigate into the
proper spot in the result. The number of transpositions is tracked in iiTopBits
which tells how many bits in ii are above the kk-th bit. And, if the bit is also
set in ii, then we have translated the bit next to an adjacent one. If that is the
case, then we must annhilate the like subscripts.

20a 〈template multiplication table calculate sign 20a〉≡ (19c)
int sign = 1;

for (unsigned int kk=0; kk < (P+Q); ++kk) {
unsigned int bit = (1U << kk);

〈template multiplication table update iiTopBits 20b〉

if ((jj & bit) != 0) {
sign *= (iiTopBits & 1) ? -1 : 1;

if ((ii & bit) != 0) {
〈template multiplication table annhilate like indices 20c〉

}
}

}

If the current bit is set in ii, then we must decrement the number of bits
that the bit in jj will have to pass on its way into position.

20b 〈template multiplication table update iiTopBits 20b〉≡ (20a)
if ((ii & bit) != 0) {

--iiTopBits;
}

If the unit vector that we are sliding is one of the first p, then the sign is fine
the way it is. But, if it is one of the other q, then we have to toggle the sign to
annhilate the indices.

20c 〈template multiplication table annhilate like indices 20c〉≡ (20a)
if (kk >= P) {

sign *= -1;
}

20

6.2.2 Query Method

One can check the sign adjustment of the multiplication of the ii coefficient
by the jj coefficient by calling this method. It simply range checks the indices
and then returns whether the multTable entry for those indices is positive.

21a 〈template multiplication public methods 21a〉≡ (21b)
static inline bool IsPositive(unsigned int ii, unsigned int jj)
{

if (ii >= (1U << (P+Q))) {
throw std::out_of_range("first index");

}
if (jj >= (1U << (P+Q))) {

throw std::out_of_range("second index");
}
return (multTable[ii][jj] >= 0);

}

6.3 Class

The multiplication table inherits from the GeomGradeTable which is described
in section 7 on page 21. The class itself contains some private data, a protected
constructor, and the public query method.

21b 〈template multiplication table 21b〉≡ (24a)
template<const unsigned int P, const unsigned int Q=0>

class GeomMultTable : public GeomGradeTable<P+Q> {
private:

〈template multiplication table private data 19a〉
protected:

〈template multiplication methods 19c〉
public:

〈template multiplication public methods 21a〉
};

Defines:
GeomMultTable, used in chunks 16 and 19.

Uses GeomGradeTable 23b.

7 The GeomGradeTable Template Class

The general GeometricAlgebra template class and the GeomMultTable template
class use the GeomGradeTable template class. This template class is not in the
nklein namespace alongside the GeometricAlgebra template class. It is not
intended for general use. But, it helps conserve memory.

21

7.1 Data

The thrust of this table is that it holds the grade of each coefficient.

22a 〈template grade table private data 22a〉≡ (23b)
static int gradeTable[1U << (N)];

22b 〈template grade table data 22b〉≡ (24b)
template<const unsigned int N>

int GeomGradeTable<N>::gradeTable[1U << (N)];
Uses GeomGradeTable 23b.

7.2 Methods

Herein lie the implementations of the constructor and the query methods for
this template class.

7.2.1 Constructor

We simply count the number of bits that are set in ii. This is the grade of the
coefficient with index ii.

22c 〈template grade methods 22c〉≡ (23b)
GeomGradeTable()
{

for (unsigned ii=0; ii < (1U << (N)); ++ii) {
unsigned int iiBits = 0;
〈template grade table count bits in ii 22d〉
gradeTable[ii] = iiBits;

}
}

Uses GeomGradeTable 23b.

To count the bits in ii, we loop through each byte of ii with the help of the
char* called ptr. At each byte, we add in the number of bits which are set in
the low nibble and the high nibble with the help of the lookup table lut.

22d 〈template grade table count bits in ii 22d〉≡ (22c)
char* ptr = (char*)ⅈ

for (unsigned int kk=0; kk < sizeof(unsigned int); ++kk) {
static const unsigned int lut[] = {

0, 1, 1, 2, 1, 2, 2, 3,
1, 2, 2, 3, 2, 3, 3, 4

};
iiBits += lut[(ptr[kk] >> 0) & 0x0F];
iiBits += lut[(ptr[kk] >> 4) & 0x0F];

}

22

7.2.2 Query Method

The GeomGradeTable class has this accessor method to retrieve the grade of a
given index. It simply range checks the index and then returns the table entry
for the given index.

23a 〈template grade public methods 23a〉≡ (23b)
static inline unsigned int GetGrade(unsigned int index)
{

if (index >= (1U << (N))) {
throw std::out_of_range("index");

}
return gradeTable[index];

}

7.3 Class

The grade table template class contains some private data, a protected constructor,
and its public query method.

23b 〈template grade table 23b〉≡ (24a)
template<const unsigned int N>

class GeomGradeTable {
private:

〈template grade table private data 22a〉
protected:

〈template grade methods 22c〉
public:

〈template grade public methods 23a〉
};

Defines:
GeomGradeTable, used in chunks 21 and 22.

23

8 Source Files

In order to use all of this stuff, we will have to break it out into source files. We
have broken it up into three source files which will hopefully ensure the best
use of memory.

8.1 geoma.h

The geoma.h file contains the declarations and implementations of each of the
classes described above. These are all wrapped in the nklein namespace to
hopefully avoid collisions with anything else in the free world.

24a 〈geoma.h 24a〉≡
namespace nklein {

namespace nklein_priv {
〈template grade table 23b〉
〈template multiplication table 21b〉

};

〈template class 16〉
〈friend methods 7b〉

};

8.2 geomaData.h

The geomaData.h file contains all of the static variable declarations needed by
the template classes in geoma.h. We separated this out from the rest of geoma.h
so that if one is using the same vector type across multiple source files, one
would only need to have the geomaData.h included in one of them. This avoids
having the table declared in multiple places.

24b 〈geomaData.h 24b〉≡
namespace nklein {

namespace nklein_priv {
〈template multiplication table data 19b〉
〈template grade table data 22b〉

};

static const char* GeometricAlgebraVersion
= "nklein::GeometricAlgebra::version: " 〈version 2〉;

};
Uses GeometricAlgebra 16.

24

8.3 geoma.cc

And, the geoma.cc simply includes the test code above. In practice, you will
not need this file at all. It simply demonstrates how you would go about
employing this template class.

25 〈geoma.cc 25〉≡
#include <iostream>
#include <stdexcept>
#include <complex>
#include "geoma.h"
#include "geomaData.h"

〈test code 17〉

Document Information

This document was created using vi, noweb, and LATEX.

Noweb Index

GeometricAlgebra: 5b, 6a, 6b, 7b, 7c, 8a, 8b, 9a, 9b, 10, 11, 12, 13a, 13b, 14, 15,
16, 17, 24b

GeomGradeTable: 21b, 22b, 22c, 23b
GeomMultTable: 16, 19b, 19c, 21b

25

